
Electronic Notes in Theoretical Computer Science 82 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 17 pages

A Formally Verified Register Allocation
Framework

Kent D. Lee 1

Computer Science
Luther College

Decorah, Iowa USA

Abstract

When using formal methods to generate compilers it is desirable for all levels of the
compiler to be formally specified. Typically, register allocation has been thought to
be equivalent to graph coloring. Since graph coloring is NP-Complete most algo-
rithms for register allocation have been ad-hoc. This paper presents a framework
for register allocation that has been formally verified using an inductive theorem
prover.

1 Introduction

Generating compilers from formal language descriptions means targeting a
specific machine architecture. Because of the nature of most high-level lan-
guages, stack-based target architectures are easy architectures for which to
generate code. However, most new architectures are RISC-based and there-
fore require operands to be in registers.

To ease the assignment of operands to registers, register allocation has
typically been performed by assuming an unlimited supply of symbolic regis-
ters. Once code generation is completed, ad-hoc methods are used to assign
these symbolic registers to the actual, physical registers of the machine [2].
This process resembles graph coloring which is known to be NP-Complete [3].
Therefore it has been thought that register allocation is an NP-Complete
problem and hence must be done by ad-hoc methods.

This paper presents an algorithm for register allocation that is not NP or
NP-Complete. In fact, it is O(|V |2) where V is the set of symbolic registers
being allocated.

The paper begins by presenting an example of a small program to moti-
vate the discussion of register allocation. Then, a formal description of that

1 Email: leekentd@luther.edu

c©2003 Published by Elsevier Science B. V.

Lee

program using Action Semantics is presented. An assembly language imple-
mentation of the program is provided as well, showing how symbolic registers
are used in the target code. Next, a property of register interference graphs is
presented that allows them to be minimally colored in polynomial time and a
proof of correctness is provided. A framework for register allocation, based on
the proof is presented in the next section. An example of using the framework
to generate code is presented, and finally, the work is compared to other work
on register allocation.

2 A Motivating Example

let fun f(x)=x+5

val i = ref 0

in

i:=input();

output(1 + ((2 + 3) + f(!i)))

end

Fig. 1. a Small program

Consider the program written using a small subset of ML in figure 1.
This language will be referred to as the Small language. Given an Action
Semantics [8] description for Small [5], the program’s corresponding action
might look like the one given in figure 10.

Typically, formal semantic descriptions of programs are not directly suit-
able for code generation in low-level languages [6]. While Action Semantics
is chosen as the formal method for language description in this paper, the
register allocation framework presented here can be used in any compiler.

Regardless of the chosen formal method for language description, trans-
formations on the description are usually required to get the program’s repre-
sentation ready for code generation. For instance, binding elimination is often
performed [9] on actions. Statically known information is usually applied to
the formal notation to simplify the program description. Some compilers may
employ partial evaluation with respect to some known (static) information [1]
to simplify the source program.

Whichever formal language is used, the end result is a transformed de-
scription of a program that is in some way more suitable for translation to the
intended target architecture. In this paper, the action in figure 10 is trans-
formed by removing statically known bindings and by eliminating unneeded
transient values. The resulting action, along with some sort (i.e. type) infor-
mation is presented in figure 11. The action in figure 11 is ready to be given to
a code generator. In the next section this action is given to a code generator
which must generate instructions involving registers to implement it.

Quite frequently, the transformed description of a program is in a form

2

Lee

that resembles postfix notation (i.e. operands are evaluated first, followed by
the operation itself). For instance, the action in figure 11 is in postfix form.
Postfix actions are described in [6]. Stack machines are designed for postfix
evaluation. Howevever, register machines are more prevalent. The register
allocation framework presented here can be used to emulate a stack machine
in registers. This is described in more detail in section 6.

3 Code Generation and Register Allocation

In this section the action in figure 11 is given to a code generator to be trans-
lated to a target architecture. Since most target architectures today are RISC,
and most RISC architectures have very minor differences (at least at the in-
struction set architecture level) the particular target architecture is inconse-
quential. For purposes of discussion consider the MIPS target architecture.

The action given in figure 11 would typically be given to the code gener-
ator as an abstract syntax tree, so it is possible to think of generating code
incrementally for this action.

Consider the task of generating code for this subaction:

give 2
and then
give 3

then
give the sum of the given data

As stated in the introduction, code generation is simplified if it is possible to
assume an unlimited supply of symbolic registers. Symbolic registers will be
denoted by R0, R1, R2, etc. To generate code for this action the number 2
could be loaded into register R7, 3 could be loaded into R8, and R7 and R8
could be added together. This results in the MIPS code:

li R7,2
li R8,3
add R7,R7,R8

Some things to note about this code:

• The symbolic registers R7 and R8 interfere with each other. That means
they cannot be assigned the same physical register.

• At the end of this code R8 contains a value that isn’t needed again.

• However, R7 contains a value that will be used later.

This information leads to the construction of a register interference graph.
A register interference graph contains vertices representing symbolic registers,
and edges exist between vertices when their corresponding symbolic registers
interfere with each other. The complete MIPS code for this example program
is given in figure 12. The register interference graph for the code is given in

3

Lee

R0 R1

R2 R3

R4 R5

R8

R6

R7

R9

Fig. 2. The register interference graph for the code in figure 12

figure 2.

To complete the code generation, the symbolic registers need to be assigned
to physical registers of the machine. From the register interference graph it is
fairly easy to conclude that three physical registers (in addition to the physical
registers already being used) are required to implement the code in figure 12.
In fact, three is the minimum number of registers required given the register
interference graph in figure 2. But, how can this be formally verified especially
when graphs become more complex?

4 Minimally Coloring Register Interference Graphs

In general, graph coloring is known to be NP-Complete. However, if it is
possible to consider only certain types of graphs there may exist polynomial
time algorithms to color them. This is the case with register interference
graphs, at least the type of register interference graphs considered in this
paper. Pittman and Peters say in their book on compiler design that a simple
demand policy for allocating symbolic registers seems to work best [10]. This
paper helps to formalize that statement. A simple demand based register
allocation policy leads to register interference graphs that adhere to what is
called the lifetime property in graph theory. This property can be formally
stated as follows.

Definition: A simple undirected graph G = (V, E), exhibits the lifetime
property iff ∃π : N → V so that if (π(i), π(k)) ∈ E, then (π(i), π(j)) ∈ E,
i < j < k where π is a one-to-one mapping for N = {1, 2, ..., |V |}.
Informally, this property means that there is an ordering of the vertices

such that if two vertices have an edge between them, then all vertices between
the first vertex and the last vertex also have edges to the first vertex. In
terms of symbolic registers, it means that symbolic registers are created, they
carry live values for a while, and then they aren’t used again. In other words,
register interference graphs that are derived from a simple demand based

4

Lee

register allocation policy.

Note that finding this mapping π, if it exists, for a graph would take expo-
nential time in general, so this does not provide a polynomial time algorithm
to solve the graph coloring problem for all graphs for which the lifetime prop-
erty holds. However, in the case of register interference graphs, the mapping is
ready to obtain. It is simply the order in which the symbolic registers were re-
quested. For simplicity, assume from now on that the mapping π is implicitly
given as the indices of vertices in V for any graphs with the lifetime property,
that is, π(i) = vi for any vi ∈ V .

Proof that the register interference graphs considered here may be min-
imally colored in polynomial time is given below. The following proof was
first given in a technical report authored by Kent Lee and Hantao Zhang [7].
The proof also leads to the framework for register allocation. The algorithm
is implicitly given in the proof of the following theorem, which is done by
induction on the number of vertices in V .

Theorem: A simple undirected graph, G = (V, E) exhibiting the lifetime
property can be minimally colored in time O(|V |+ |E|).

Proof: (by induction on the cardinality of V)
Base case: |V | = 0. Clearly, G can be colored by 0 colors in constant

time.
Inductive case: Assume, by the induction hypothesis, for all G = (V, E)

with |V | = n that G can be minimally colored by k colors in time O(|E|+
|V |) if G exhibits the lifetime property. Consider G′ = (V ∪{vn+1}, E ∪E ′)
with |V ∪{vn+1}| = n+1 where E ′ contain only the edges from vertices in V
to the vertex vn+1. We must consider three cases for G′, which is supposed
to exhibit the lifetime property.

Case 1: vn+1 has less than k neighbors. Clearly, vn+1 can be colored one
of the k colors of G that is not one of the colors of the neighbors of vn+1.
The neighbor colors of vn+1 can be determined by examining the coloring
for G and the neighbors of vn+1 in E ′; this can be done in time O(|E ′|).
Since no new color is needed, G′ is still minimally colored.

Case 2: vn+1 has k neighbors. Then, since the lifetime property holds for
G′, if (vi, vn+1) ∈ E ′ then (vi, vj) ∈ E, for i < j < n + 1. This means that
vn+1 forms a (k + 1)-clique with its k neighbors in V . But we know from
graph theory that a simple undirected graph with a (k + 1)-clique cannot
be colored in less than k + 1 colors. Therefore, we have to assign a new
color to vn+1; G′ is thus still minimally colored with k + 1 colors. This can
be done again in time O(|E ′|).

Case 3: vn+1 has more than k neighbors. Then there exists at least a
(k + 1)-clique in G by the same argument as case 2. But this means that G
cannot be colored with k colors. This contradicts our induction hypothesis,
so this case is invalid.

Therefore, G′ can be minimally colored if G is minimally colored, and we
can conclude by induction that all simple undirected graphs exhibiting the

5

Lee

lifetime property may be minimally colored in time O(|V |+ |E|) (assuming
we know the mapping of the vertices of V). 2

The proof given here is the central idea exploited in the framework provided
below. In addition, the technical report with Hantao Zhang [7] contains results
from proving the same theorem using an automated inductive theorem prover
called RRL. The intended property for RRL to prove was: num colors(G) ≤
maxclique(G). After proving 8 auxiliary lemmas, RRL was able to prove this
property in less than 30 seconds on a HP 715 workstation (running the AKCL
lisp). Since any graph cannot be colored in less colors than the maximum size
clique, it is safe to conclude that the coloring is indeed minimal.

5 A Framework for Register Allocation

R6 R7 R8 R9R0 R1 R2 R3 R4 R5

Fig. 3. The register interference graph redrawn

The algorithm for register allocation is based on the simple demand policy
described above. With any algorithm or framework, the first step is to arrive
at a representation of the problem. In this paper, symbolic register names are
R0, R1, R2, etc. Therefore, they may be represented by integers (omitting
the R). Register interference graphs are represented by lists of pairs. Each
pair consists of two integers. The first integer is the number of the symbolic
register. The second number indicates the physical register to which it is
assigned (i.e. its color) or negative one (i.e. -1) if the register is still alive.

The list representation is easy to visualize by looking at the graph of fig-
ure 2. However, it may help if the graph is redrawn as in figure 3. The list
that represents this graph is given below.

[(9, 2), (8, 2), (7, 1), (6, 0), (5, 1), (4, 0), (3, 1), (2, 0), (1, 1), (0, 0)]

Notice that the second number in each pair is not only the color of the vertex
(i.e. its assigned physical register) but it is also the number of neighbors that
preceed it in the graph permutation.

Three functions implement this framework. The functions are written in
Standard ML. The graph is automatically constructed via the use of these
functions.

• The first function, createReg in figure 4, is given a register interference graph
and creates a new register by returning a new symobolic register name and
a new register interference graph that consists of the given graph with the
addition of the new register.

6

Lee

val regNum = ref 0;

fun createReg(regList) =

let val reg = !regNum

in

regNum := !regNum+1;

("R"^Int.toString(reg),(reg,~1)::regList)

end

Fig. 4. The createReg function

exception unknownReg;

exception unFreedReg;

fun unFreedCount([])=0

| unFreedCount((x,y)::t) =

if y = ~1

then 1+unFreedCount(t)

else unFreedCount(t)

fun freeReg(r, []) =

(TextIO.output(TextIO.stdOut,

"Freeing non-existant register "^r^"!\n");

raise unknownReg)

| freeReg(r, (regNum,color)::t) =

if r = "R"^Int.toString(regNum)

then (regNum,unFreedCount(t))::t

else if color = ~1

then

(TextIO.output(TextIO.stdOut,

"Illegally freeing register "^r^

" before R"^Int.toString(regNum)^"\n");

raise unFreedReg)

else (regNum,color)::freeReg(r,t)

Fig. 5. The freeReg function

fun offsetRegs([],offset) = []

| offsetRegs((regNum,color)::t,offset) =

if color <> ~1

then (regNum,color+offset)::(offsetRegs(t,offset))

else (regNum,~1)::(offsetRegs(t,offset))

fun concatRegs(g1, g2) = offsetRegs(g1,unFreedCount g2)@g2

Fig. 6. The concatRegs function

7

Lee

• freeReg in figure 5 is called at the end of the lifetime of a symbolic register.
It is given a symbolic register and a register interference graph and returns
a new register interference graph with the given symbolic register freed.

• concatRegs in figure 6 is called if two register interference graphs are to be
merged. This may be needed if code generation has been performed on two
parts of a computation (in a bottom-up fashion) and at some later point
during code generation the code is merged into one larger computation.

The createReg function uses the -1 (note that in ML -1 is written ~1) to
indicate that the graph is not yet complete because registers with color -1 are
still alive. The freeReg function uses a result from the theorem. All registers
that follow a given register, r, in the register list and are not yet freed must
be neighbors of r. Assume there are k such neighbors. Then, if they are
neighbors, by the lifetime property they must form a k-clique. But it was
proved that this is sufficient to say that with the addition of r they must form
a (k+1)-clique. Therefore r should be colored with color k+1. Since colors
begin with 0, the unFreedCount returns the next available color.

The freeReg function checks that when a register, r, is freed there are
no other registers created after r that are still alive. If there are other live
registers that were created after r, freeing r would violate the lifetime property
and therefore is not allowed. In effect, this places a first in/first out restriction
on register allocation which is another way of thinking of the lifetime property.
Section 6 uses the first in/first out property in its implementation.

The concatRegs function can be called to combine register interference
graphs at anytime in the future. This is especially useful if your compiler
can’t guarantee a left to right bottom-up traversal of the abstract syntax tree.

Considering the computational complexity of the functions above the cre-
ateReg function is O(1). The freeReg function must traverse the register list
once for each register that is freed. This is done by calling the unFreedCount
function, which is then O(|V |) where V is the set of symbolic registers in the
register interference graph. The concatRegs function has similar complexity
as it also calls the unFreedCount function. Therefore, the framework performs
at least as well as O(|V |2). Since calls to freeReg occur interspersed with
the compilation of the code, in practice there is no noticable wait for register
allocation to occur during compilation.

6 An Example Use of the Framework

The framework presented in this paper has been successfully used in practice.
In particular, the Action Semantics-based compiler generator called Genesis [5]
uses an extension of this framework when targeting the MIPS architecture.
The program in figure 1 was compiled by a Genesis generated compiler and
the resulting MIPS code (slightly abbreviated due to length) is presented in
figure 12. The main goal of Genesis has been to study Action Semantics-based

8

Lee

compiler generation as it applies to sort inference and action transformations.
No attempt has been made to make Genesis’ compilers produce efficient code.

Parser

GeneratorGenerator

Scanner

Grammar Semantic Specification

Action Semantic Definition (ASD)

ML−lex ML−yacc

Assembly

Tokens ActionProgram

Annotated Action

Postfix
Action

Machine

Key: Language Specific

MIPS Assembler Code Generator

Common

ParserScanner Sort Checker

Lexical Specification

Transformer
Language

Fig. 7. The Genesis compiler generator

The structure of Genesis is shown in figure 7. Because Genesis is an Action
Semantics-based compiler generator, the program in figure 1 is first translated
to its action. Then the action is sort checked (i.e. type checking is performed
on it) to verify that the action is well-formed. Finally, the action is transformed
before it is given as input to the code generator.

Code generation is generally postfix in nature. Operands are evaluated
before the operation is applied to the operands. When compiling actions it
makes sense to get the action in a form as close to the form of the low-level code
as possible. That is the responsibility of the action transformer in Genesis’
compilers. It insures that actions are postfix in nature. Postfix actions give
their operands and then operate on them. For instance, the action

give 2
and then
give 3

then
give the sum of the given data

begins by evaluating the two operands, by giving 2 and 3, and ends by applying
the sum operation to them. A stack machine target architecture is well suited
for postfix evaluation. It would be convenient if a register machine could
emulate a stack machine, since stack architectures are easy to target when
evaluating postfix expressions.

9

Lee

val regStack = ref ([]:string list);

exception emptyRegStack;

fun pushReg r =

(regStack := (r::(!regStack)))

fun popReg() =

(if (!regStack = []) then raise emptyRegStack else ();

let val x as (r::rl) = !regStack

in

regStack:=rl;

r

end)

Fig. 8. The pushReg and popReg functions

val regList = ref ([]:(int*int) list);

fun getReg() =

let val result as (r,rl) = createReg(!regList)

in

regList:=rl;

r

end

fun delReg(r) =

let val rl = freeReg(r,!regList)

in

regList:=rl;

()

end

Fig. 9. The getReg and delReg functions

The register framework presented in section 5 can be used to emuluate a
stack machine during code generation. With the addition of a few functions,
symbolic registers can be “pushed” and “popped” from a register stack using
pushReg and popReg. These functions are presented in figure 8. In addition,
a couple of functions simplify calls for creating and freeing registers in the
framework. The functions getReg and delReg, in figure 9, imperatively create
and free registers using the createReg and freeReg functions.

The register framework presented in this paper is used for generating MIPS
code in Genesis’ compilers. For instance, when the action give 2 is encoun-
tered, the code generator responds by calling the getReg function to allocate
a register, generating code to put the number 2 in that register, and then

10

Lee

pushing the register onto the register stack using pushReg. The actual code in
the code generator, written in ML, looks like this

fun gen_action (give’(y, _)) env =
generate_yielder y env

and generate_yielder (intVal’(i,_)) env =
let val r = getReg()
in
TextIO.output(streamOf env,"\tli "^r^","^Int.toString(i)^"\n");
pushReg(r)

end

When give the sum of the given data is encountered in the action, the code
generator knows that addition is a binary operation. The code generator’s
code looks like this

fun generate_yielder (sum’(y,_)) env =
let val reg2 = popReg()

val reg1 = popReg()
in
delReg(reg2);
pushReg(reg1);
TextIO.output(streamOf env,"\tadd "^reg1^","^reg1^","^reg2^"\n")

end

There should be two operands on the simulated register stack. Upon rec-
ognizing the addition operation, the code generator responds by popping two
registers from the register stack, generating code to perform the required ad-
dition, and then pushing the register containing the result onto the register
stack. Notice the register that is no longer needed is freed by calling delReg.

7 Comparison to Other Work

Chaitin’s work on register allocation [2] concentrates on allocating variables
to registers. The focus of that work is studying the liveness range of variables.
More recent work by Hendren, et al [4] has extended that work by looking
at interval graphs and hierarchical cyclical interval graphs. In each of these
approaches nodes in the register interference graph correspond to variables
in the program and edges exist between nodes whose corresponding variables
interfere with each other. Since variables can exist in virtually any order in
a program, there is no structure to the corresponding graphs. The best algo-
rithms for coloring these graphs will always be based on heuristics, assuming
that NP-complete is really NP and not P!

However, one possible advantage of these other approaches is that they
consider register allocation on a procedure or function level. The approach
presented here does not allocate variables to registers. Instead, it focuses on
a simpler problem of allocating transient values (which may be copies of vari-
ables) to registers. The idea of allocating registers for transient values comes
from Action Semantics where transients carry values during performance of

11

Lee

an action. By limiting ourselves to values, the resulting register interference
graphs have a structure that can be exploited to minimally color them in
polynomial time.

Put another way, while other work in register allocation concentrates on al-
locating registers for an entire procedure or function, the framework presented
here concentrates on allocating registers at the statement level, although noth-
ing is preventing it from being used on a procedure or function level.

In comparing the two approaches several things can be said about each
approach. The primary advantage of Chaitin’s and Hendren’s work is in re-
ducing the number of memory accesses that are needed to place values in
registers. If a variable is assigned to a register for an entire function or pro-
cedure this certainly reduces the number of required loads. Without further
work, the approach presented here will certainly result in more load instruc-
tions. However, with the advent of large data caches in RISC processors, load
instructions don’t carry nearly the penalty of earlier CISC architectures.

Write operations may carry a larger penalty in a RISC architecture since
writes have the potential to invalidate data in the cache. When consider-
ing register allocation on a procedure or function level, spill code will almost
inevitably be generated, resulting in writes to memory. However, with the ap-
proach presented in this paper, register spilling will happen very infrequently.

8 Conclusion

Register allocation can be expressed in terms of symbolic registers and register
interference graphs. If a simple demand policy is employed, register interfer-
ence graphs adhere to the lifetime property. This paper has shown that such
graphs can be minimally colored in polynomial time.

In addition to the somewhat rigorous proof that was given in the paper,
the proof was verified by providing it to an automated inductive theorem
prover. The theorem prover concluded that graphs that adhere to the lifetime
property can be minimally colored. The proof demonstrated the coloring
occurs in polynomial time.

The framework presented in this paper takes advantage of the proof. The
graphs it produces adhere to the lifetime property, essentially enforcing a first
in/first out allocation of registers of the machine.

Future work on this framework includes studying how code generated with
it performs when compared to other more conventional register allocation
techniques. If it is found that code generated using this framework performs
significantly poorer due to an increased number of load instructions, register
loads might be suppressed by register coalescing. If registers can be coalesced
in such a way that the lifetime property is preserved, some register loads might
be eliminated while still being able to minimally color the resulting graphs in
polynomial time.

If in experiments register spilling turns out to be an issue, it could also

12

Lee

be studied in the context of preserving the lifetime property. By using this
framework as a basis for further research, researchers can either find graph
transformations that preserve the lifetime property or understand the trade-
offs they are making when abandoning this property in register interference
graphs.

Acknowledgement

I would like to thank Hantao Zhang for his help in getting the RRL theorem
prover to prove the theorem presented in this paper. Automated inductive
theorem proving is still something of an art and Hantao was responsible for
discovering the eight axioms needed by RRL to reach its final conclusion.

13

Lee

References

[1] A. Bondorf and J. Palsberg. Compiling actions by partial evaluation.
In Proceedings of Conference on Functional Programming Languages and
Computer Architecture (FCPA ’93), Copenhagen, DK, 1993.

[2] Chaitin, Auslander, Chandra, Cocke, Hopkins, and Markstein. Register
allocation via coloring. Computer Languages, Vol. 6:47–57, 1981.

[3] Garey and Johnson. A Guide to the Theory of NP-Completeness. Freeman,
1979.

[4] Laurie J. Hendren, Guang R. Gao, Erik R. Altman, and Chandrika Mukerji. A
register allocation framework based on hierarchical cyclic interval graphs. In
Computational Complexity, pages 176–191, 1992.

[5] K.D. Lee. Action Semantics-based Compiler Generation. PhD thesis,
Department of Computer Science, University of Iowa, 1999.

[6] K.D. Lee. Postfix transformations for action notation. In Proceedings of
AS2000. BRICS Notes Series NS-00-6, 2000.

[7] K.D. Lee and H. Zhang. Formal development of a minimal register allocation
algorithm. Technical Report 99-07, University of Iowa, Department of
Computer Science, Iowa City, IA, 1999.

[8] P.D. Mosses. Action Semantics: Cambridge Tracts in Theoretical Computer
Science 26. Cambridge University Press, 1992.

[9] H. Moura. Action Notation Transformations. PhD thesis, Department of
Computer Science, University of Glasgow, 1993.

[10] T. Pittman and J. Peters. The Art of Compiler Design. Prentice Hall,
Englewood Cliffs, NJ 07632, 1992.

14

Lee

bind “output” to native abstraction of an action
before

bind “input” to native abstraction of an action
hence

furthermore
recursively

bind “f” to closure of the abstraction of
furthermore

bind “x” to the given (integer|truth-value)
thence

give (integer|truth-value) bound to “x”
or

give [(integer|truth-value)]cell bound to “x”
and then

give 5
then

give the sum of the given data
before

allocate [datum]cell
and then

give 0
then

store the given (integer|truth-value)#2 in the given [datum]cell#1
and then

give the given [datum]cell#1
then

bind “i” to the given ((integer|truth-value)|[(integer|truth-value)]cell)
hence

give (integer|truth-value) bound to “i”
or

give [(integer|truth-value)]cell bound to “i”
and then

complete
then

enact application of the abstraction of an action bound to “input” to the given data
then

store the given (integer|truth-value)#2 in the given [datum]cell#1
then

give 1
and then

give 2
and then

give 3
then

give the sum of the given data
and then

give (integer|truth-value) bound to “i”
or

give [(integer|truth-value)]cell bound to “i”
then

give the (integer|truth-value) stored in the given [datum]cell
then

enact application of the abstraction of an action bound to “f” to the given data
then

give the sum of the given data
then

give the sum of the given data
then

enact application of the abstraction of an action bound to “output” to the given data

Fig. 10. A Small program’s action

15

Lee

bind “f101” to the abstraction(integer)↪→(integer)0 of
give [integer]cell(0,1)

and then
give the given integer

then
store the given integer#2 in the given [integer]cell(0,1)#1

then
give [integer]cell(0,1)

then
give the integer stored in the given [integer]cell(0,1)

and then
give 5

then
give the sum of the given data

and then
give [integer]cell(0,0)

and then
give 0

then
store the given 0#2 in the given [integer]cell(0,0)#1

and then
give [integer]cell(0,0)

and then
enact “input” at depth 0()↪→(integer)

then
store the given integer#2 in the given [integer]cell(0,0)#1

then
give 1

and then
give 2

and then
give 3

then
give the sum of the given data

and then
give [integer]cell(0,0)

then
give the integer stored in the given [integer]cell(0,0)

then
enact “f101” at depth 0(integer)↪→(integer)

then
give the sum of the given data

then
give the sum of the given data

then
enact “output” at depth 0(integer)↪→()

Fig. 11. A Small program’s transformed action

16

Lee

.data
prmpt: .asciiz ”? ”

.text
main: addi $sp,$sp,-40

sw $ra,4($sp)
j f 101

f 101: addi $sp,$sp,-40
sw $ra,4($sp) # store the return address
sw $t0,0($sp) # store the access link
sw $s0,8($sp) # preserved across function calls
...
sw $a0,36($sp)
move R0,$sp # accessing the cell in this way so we can follow access links if necessary
addi R0,R0,36 # now load the address of the cell
lw R0,0(R0)
li R1,5
add R0,R0,R1
move $v0,R0
lw $s0,8($sp) # restore preserved register
...
addi $sp,$sp,40
jr $ra # and return

f 101: move R2,$sp # accessing the cell in this way so we can follow access links if necessary
addi R2,R2,36 # now load the address of the cell
li R3,0
sw R3,0(R2)
move R4,$sp # accessing the cell in this way so we can follow access links if necessary
addi R4,R4,36 # now load the address of the cell
jal read
move R5,$v0
sw R5,0(R4)
li R6,1
li R7,2
li R8,3
add R7,R7,R8
move R9,$sp # accessing the cell in this way so we can follow access links if necessary
addi R9,R9,36 # now load the address of the cell
lw R9,0(R9)
move $a0,R9 # put the parameter in the parm register
move $t0,$sp # set the access link
jal f 101 # call the function
move R9,$v0 # save the function result
add R7,R7,R9
add R6,R6,R7
move $a0,R6
jal write
lw $ra,4($sp) # restore the return address
addi $sp,$sp,40
jr $ra

write: li $v0,1
syscall
jr $ra

read: li $v0,4
la $a0, prmpt
syscall
li $v0,5
syscall
jr $ra
equ R0 $s0 equ R1 $s1 equ R2 $s0 equ R3 $s1 equ R4 $s0
equ R5 $s1 equ R6 $s0 equ R7 $s1 equ R8 $s2 equ R9 $s2

Fig. 12. The MIPS code for the action in figure 11

17

