
A Framework for Teaching Programming Languages

Kent D. Lee
Luther College

700 College Drive
Decorah, IA 52101 USA
kentdlee@luther.edu

ABSTRACT
This paper provides a description of a framework for pro-
gramming language implementation that is accessible to stu-
dents in a one semester course focused on programming lan-
guages. Rather than concentrating solely on language fea-
tures, this paper describes a framework where imperative,
functional and logic programming languages are all used to
develop a compiler for a non-trivial subset of a functional
programming language. Provided by the framework are a
virtual machine, a disassember of Python programs, a par-
tial implementation of a Standard ML compiler with sug-
gested tests, and a partial implementation of a type infer-
ence system implemented using Prolog, again with suggested
tests.

Classroom experience gained while using this framework is
also shared. A suggested fourteen week sequence is provided.
Real reactions from students and reflections on coverage of
the ACM 2013 Curricula guildelines conclude the paper.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Infor-
mation Science Education—Computer science education

General Terms
Languages,Theory

Keywords
Programming Languages, Compilers, Virtual Machines, Type
Inference, Type Checking

1. INTRODUCTION
Doing is better than seeing. This has been said many times
before by many Computer Science professors and profession-
als. The premise holds for learning about programming lan-
guages as well. Using a programming language to implement
something of substance, more than just a few lines of code,
helps students form a better understanding of a language

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677245

and how it can best be used. Some texts on programming
languages are primarily surveys of programming languages
where important aspects of languages are described, mostly
with short examples. For instance, type systems are very
important, but students have a hard time getting invested
in learning about type checking and type inference without
a real goal in mind. Recently, several texts on programming
languages have abandoned this survey approach to teach-
ing programming languages in favor of using programming
languages to implement programming languages[?, ?, ?, ?],
giving students more purpose in their language exploration.

Doing is more complicated than seeing. Of course, the trade-
off is added complexity versus time. There is only so much
time in a semester and language implementation is a gen-
erally complex problem. It is critical that this approach be
accessible while still having substance. This paper presents
a successfully taught framework for the implementation of
programming languages. In particular, a compiler is devel-
oped from the bottom-up for a substantial subset of Stan-
dard ML including portable code generation for a virtual
machine, support for higher-order functions and closures,
and type infererence.

The paper begins by introducing CoCo, a virtual machine
based on the Python virtual machine. The Python virtual
machine is an excellent choice since the language supports
higher-order functions and closures. The framework includes
a disassembler for Python programs. This makes it pos-
sible for students to write Python programs and discover
the necessary virtual machine instructions. This disassem-
bly and discovery makes learning the machine language and
code generation relatively fast so other facets of program-
ming languages and their implementation may be explored.

The paper goes on to demonstrate compiling a non-trivial
Standard ML program and all that entails. Language im-
plementation issues are explored including the CoCo virtual
machine, currying, mutually recursive functions, and type
inference. The paper concludes with a proposed fourteen
week course outline based on past teaching experience. Fi-
nally, reflections on that experience from both teachers and
students is provided. And perhaps best of all, the resources
for this framework are freely available on-line.

2. THE FRAMEWORK
The language implementation framework can be divided into
three pieces. From the bottom up they are a virtual ma-

chine and Python disassembler, a partial implementation of
a Standard ML compiler written in Standard ML, and a par-
tial implementation of a type inference system for Standard
ML written in Prolog. The virtual machine, called CoCo, is
written in C++ and is a faithful implementation of a subset
of the Python virtual machine. The Python virtual machine
was chosen because Python has some functional features and
supports nested functions, higher-order functions, and static
scope.

The next sections cover each of these three parts of the
framework while compiling a simple, but non-trivial Stan-
dard ML program. Consider the Standard ML program in
figure ??. println is a polymorphic function that prints its
value to the screen and returns unit, or the unit equivalent
of None from the Python virtual machine.

1 let fun f 0 y = y
2 | f x y = g x (x∗y)
3 and g x y = f (x−1) y
4 in
5 p r i n t l n (f 10 1)
6 end

Figure 1: A Standard ML Program

The program features two function definitions using pattern
matching. The two functions are mutually recursive, essen-
tially counting down to zero while multiplying the values
together, in the end computing and printing 10!. The next
sections use this program as an example, taking it through
the same process, much abbreviated for this paper, that stu-
dents work through using this framework in a semester long
course.

1 import d i sa s s emb l e r
2

3 def f (x , y) :
4 i f x==0:
5 return y
6 return g (x , x∗y)
7 def g (x , y) :
8 return f (x−1,y)
9 def main () :

10 print (f (10 , 1))
11

12 d i sa s s emb l e r . d i sa s semble (f)
13 d i sa s s emb l e r . d i sa s semble (g)
14 d i sa s s emb l e r . d i sa s semble (main)

Figure 2: A Python Program

2.1 The Disassembler and VM
The CoCo VM (Virtual Machine) is based on Python 3.2.
The framework includes a disassembler that outputs CoCo
VM programs. The CoCo disassembler uses the Python dis-
assembler, which is supplied with the Python distribution.
Python does not guarantee backwards compatibility of its
virtual machine, so Python 3.2 is required to run the disas-
sembler. Consider the Standard ML program in figure ??.
The Python program in figure ?? is in many ways similar
to the Standard ML program. Calling the main function of
this program has the same result. In this case the disas-
sembler module was imported and the three functions were

disassembled. The output from the disassembler is CoCo
VM assembly language as shown in figure ??. The instruc-
tions are taken from the Python 3.2 VM specification with
just a few minor differences to support the CoCo VM.

1 Function : f /2
2 Constants : None , 0
3 Loca l s : x , y
4 Globals : g
5 BEGIN
6 LOAD FAST 0
7 LOAD CONST 1
8 COMPARE OP 2
9 POP JUMP IF FALSE l a b e l 0 0

10 LOAD FAST 1
11 RETURN VALUE
12 l a b e l 0 0 : LOAD GLOBAL 0
13 LOAD FAST 0
14 LOAD FAST 0
15 LOAD FAST 1
16 BINARY MULTIPLY
17 CALL FUNCTION 2
18 RETURN VALUE
19 END
20 Function : g/2
21 Constants : None , 1
22 Loca l s : x , y
23 Globals : f
24 BEGIN
25 LOAD GLOBAL 0
26 LOAD FAST 0
27 LOAD CONST 1
28 BINARY SUBTRACT
29 LOAD FAST 1
30 CALL FUNCTION 2
31 RETURN VALUE
32 END
33 Function : main/0
34 Constants : None , 10 , 1
35 Globals : pr int , f
36 BEGIN
37 LOAD GLOBAL 0
38 LOAD GLOBAL 1
39 LOAD CONST 1
40 LOAD CONST 2
41 CALL FUNCTION 2
42 CALL FUNCTION 1
43 POP TOP
44 LOAD CONST 0
45 RETURN VALUE
46 END

Figure 3: A CoCo VM Program

Each function is defined separately in the CoCo language.
All constant values used in a function are defined in the Con-
stants list. The Locals includes all locally initialized variables
including function arguments. Globals include identifiers de-
fined outside the current function definition, including built-
in functions. Labels are used in the common assembly lan-
guage format as the targets of jumps and branches. The /2
that appears in the Function: f/2 definition indicates that f
is a function of two arguments.

CoCo is a stack-based VM, like the Python and Java virtual
machines. Operands are pushed onto the stack before the
instruction that operates on them. Calling a function is
accomplished by pushing the function and the arguments
onto the stack and then executing the CALL FUNCTION
instruction as shown on line 37-42 of figure ??. The 1 or 2
that appears as the operand for the call function instructions
indicates the number of arguments. The arguments appear
on top of the function to be called on the operand stack of
the VM.

Much can be gleaned from exercises like this. The corre-
lation between VM instructions and Python code helps to
inform the student of each instruction’s meaning. That, to-
gether with available documentation means a shorter learn-
ing curve to writing CoCo assembly directly from similar
examples.

The function in figure ?? is a curried function. The Python
program in figure ?? is not written in curried form. Python
does not support writing functions in curried form. But,
currying can be thought of as syntactic sugar. Any curried
function can be rewritten as a series of one argument func-
tions. The Python program in figure ?? provides one pos-
sible uncurry transformation applied to the program in fig-
ure ??. The transformed program now contains two higher-
order functions as shown. The function f takes one argument
and returns another function, f3 that also takes one argu-
ment. In this sense, the function f is now curried, taking its
arguments one at a time. The same transformation applies
to g.

1 def f (v0) :
2 def f 3 (v1) :
3 def f 2 (x , y) :
4 i f x==0:
5 return y
6 return g (x) (x∗y)
7 return f 2 (v0 , v1)
8 return f 3
9 def g (v4) :

10 def g7 (v5) :
11 def g6 (x , y) :
12 return f (x−1)(y)
13 return g6 (v4 , v5)
14 return g7
15 def main () :
16 print (f (1 0) (1))
17 i f name ==” main ” :
18 main ()

Figure 4: A Curried Python Program

Again, the disassembler can be used to see how the two
higher-order functions in figure ?? are implemented in the
VM. Disassembling the function f automatically disassem-
bles any nested functions, in this case f3 and f2. The disas-
sembled code for function f appears in figure ??.

The CoCo VM supports nested functions. In figure ?? the
second line begins the nested function f3 inside the f func-
tion. The variable v0 is used in the function f3 and is the
argument to the function f. Since v0 is referenced from the

enclosing scope of f3 it is a free variable in f3 as shown on line
25 of the CoCo VM code. The usefulness of the disassembler
is evident in understanding how to properly generate code
for non-trivial programs like the code in figure ??.

1 Function : f /1
2 Function : f 3 /1
3 Function : f 2 /2
4 Constants : None , 0
5 Loca l s : x , y
6 Globals : g
7 BEGIN
8 LOAD FAST 0
9 LOAD CONST 1

10 COMPARE OP 2
11 POP JUMP IF FALSE l a b e l 0 0
12 LOAD FAST 1
13 RETURN VALUE
14 l a b e l 0 0 : LOAD GLOBAL 0
15 LOAD FAST 0
16 CALL FUNCTION 1
17 LOAD FAST 0
18 LOAD FAST 1
19 BINARY MULTIPLY
20 CALL FUNCTION 1
21 RETURN VALUE
22 END
23 Constants : None , code (f 2)
24 Loca l s : v1 , f 2
25 FreeVars : v0
26 BEGIN
27 LOAD CONST 1
28 MAKE FUNCTION 0
29 STORE FAST 1
30 LOAD FAST 1
31 LOAD DEREF 0
32 LOAD FAST 0
33 CALL FUNCTION 2
34 RETURN VALUE
35 END
36 Constants : None , code (f 3)
37 Loca l s : v0 , f 3
38 Cel lVars : v0
39 BEGIN
40 LOAD CLOSURE 0
41 BUILD TUPLE 1
42 LOAD CONST 1
43 MAKE CLOSURE 0
44 STORE FAST 1
45 LOAD FAST 1
46 RETURN VALUE
47 END

Figure 5: A Higher-order Function Definition

Encountering the MAKE CLOSURE instruction on line 43,
students are naturally curious as to what the instruction
does. As mentioned earlier in the paper, the CoCo VM is
implemented in C++, making it possible to investigate the
meaning of an instruction by looking at its implementation.
The implementation of the make closure instruction is pro-
vided in figure ??. Consulting both the code in figure ??
and the example CoCo program in figure ?? helps in deter-

mining that a closure is made up of code and environment.
Lines 40-41 of figure ?? build a tuple containing the variable
v0 from the enclosing environment. Line 42 loads the code
for f3 onto the operand stack. Line 43 builds the closure of
the code and environment. Line 44 stores that closure in the
local variable f3 so it can be returned by f.

1 case MAKE CLOSURE:
2 u = safetyPop () ;
3 v = safetyPop () ;
4 w = new PyFunction (∗ ((PyCode∗) u) ,
5 g loba l s , v) ;
6 opStack−>push (w) ;
7 break ;

Figure 6: The MAKE CLOSURE Implementation

From the C++ code in figure ?? and the example of its
use in figure ?? the closure of a function is found to be
the environment (i.e. the variable from the enclosing scope)
along with the code. A closure is environment and function
together. The closure provides the static scoping of the lan-
guage. Rather than just tell students about closures, how
nice it is to show them its significance in a program by ex-
amining the CoCo VM and a sample program that needs
the closure.

Writing and disassembling Python programs, consulting the
disassembled code, and examining the C++ implementation
of CoCo all work together toward providing a means for the
understanding of code generation for a non-trivial language.
A next step towards further understanding is to implement
a compiler for a completely different language, like Standard
ML.

2.2 A Standard ML Compiler
The investigative techniques discussed in the previous sec-
tion are put to use to develop a compiler for a subset of SML
(Standard ML) that includes datatypes like int, real, bool,
lists, and tuples. Pattern-matching is supported. Function
definition and invocation is implemented including higher-
order and mutually recursive functions like the example that
appears in figure ??.

As we saw earlier, curried functions can be transformed into
higher-order functions of one argument. A transformation
like that employed in figure ?? is provided to students and
is used during the parsing of curried functions. The conse-
quence of this syntactic transformation appears in figure ??
where the abstract syntax of SML programs only includes
functions of one argument. Any curried function will have
already been transformed into a series of one argument func-
tions before it is represented in SML abstract syntax. Any
uncurried function of more than one argument is actually a
function of one argument, a tuple.

Compiling the program from figure ?? builds the AST shown
in figure ??. The currying transformation generated the
extra functions named anon@x. The Python program in
figure ?? is a very literal translation of the AST in figure ??
into Python code. In figure ?? the anon@3 is called f3 and
anon@2 is called f2. In the function g the anon@7 is named
g7 in figure ?? and anon@6 is named g6.

1 structure MLAS = struct
2 datatype
3 exp = i n t of s t r i n g
4 | ch of s t r i n g
5 | s t r of s t r i n g
6 | boo lva l of s t r i n g
7 | id of s t r i n g
8 | l i s t c o n of exp l i s t
9 | tuplecon of exp l i s t

10 | apply of exp ∗ exp
11 | i n f i x e x p of s t r i n g ∗ exp ∗ exp
12 | expsequence of exp l i s t
13 | l e t d e c of dec ∗ (exp l i s t)
14 | r a i s exp of exp
15 | handlexp of exp ∗ match l i s t
16 | i f t h e n of exp ∗ exp ∗ exp
17 | whiledo of exp ∗ exp
18 | func of i n t ∗ match l i s t
19 and
20 match = match of pat ∗ exp
21 and
22 pat = intpat of s t r i n g
23 | chpat of s t r i n g
24 | s t r p a t of s t r i n g
25 | boolpat of s t r i n g
26 | idpat of s t r i n g
27 | wi ldcardpat
28 | i n f i x p a t of s t r i n g ∗ pat ∗ pat
29 | tup lepat of pat l i s t
30 | l i s t p a t of pat l i s t
31 | aspat of s t r i n g ∗ pat
32 and
33 dec = bindva l of pat ∗ exp
34 | b indva l r e c of pat ∗ exp
35 | funmatch of s t r i n g ∗ match l i s t
36 | funmatches of
37 (s t r i n g ∗ match l i s t) l i s t
38 end ;

Figure 7: SML Abstract Syntax

The SML compiler’s responsibility is to translate an AST
like the one that appears in figure ?? into a CoCo VM pro-
gram, like the partial program that appears in figure ??.
The target language has some requirements. First, function
definitions must appear before they are called in the CoCo
language. However, anonymous functions denoted by a func
descriptor in the SML abstract syntax, may appear any-
where an expression can appear. In addition, every function
definition must contain lists of the constants, locals, globals,
free variables, and cell variables used by the function. These
requirements dictate how code is generated from SML ASTs
like the one that appears in figure ??. Several passes over
the AST are required to generate the target program with
the correct ordering of parts.

Consider generating the list of constants used by a function.
Building this list entails traversing the patterns used by a
function definition. Consider figure ??. In the patterns used
in the definition of f a 0 appears. Constants may also appear
in the body of a function. The body is called exp in the code
below. Constants in the body of a function include 1 and
10 in figure ??. The code below traverses the definition of
patterns and expressions in a function definition looking for
all constants that were used in its definition. The constants
None, ’Match Not Found’ and 0 are added for all function
definitions. removeDups removes duplicate values from the
list.

val consts = (removeDups ("None"::

"’Match Not Found’"::"0"::

(List.foldr (fn (match(pat,exp),y) =>

(patConsts pat)@(constants exp)@y)

[] expList)))

Building the list of constants is one of the simpler tasks.
Teaching compiler generation for such a language would be a
daunting task to undertake in a semester course without the
proper approach. Extending the compiler to compile a set
of test programs provides the proper organization to make
learning compiler generation in a semester manageable.

For example, attempting to compile the program in figure ??
results in an error. The compiler code initially given to
students will not compile this code. Attempting to run the
compiler produces the following output.

Attempt to get constants for expression not

currently supported!

Expression was: ifthen

An error occurred while compiling!

The if-then-else expression was not supported by the con-
stants function. Students look for this error message within
the compiler, look at other surrounding code, and fix the
problem once they understand how the problem occurred.
Then, they try to compile again, potentially finding the next
problem. Eventually, they get to the point where code must
be generated for the if-then-else expression. A little bit of
guidance may be needed here, but that can be provided by
the Python disassembler!

Code generation is the last step to getting executable code
for correct SML programs. Once the if-then-else code gen-
eration is added, code is generated for programs like the one
in figure ?? which can be run on the CoCo VM. But, one
important aspect of the compiler is still missing. Type in-
ference is one of the unique features of the Standard ML

1 l e t d e c (
2 funmatches ([
3 funmatch (’ f ’ , [
4 match (idpat (’ v0 ’) , func (’ anon@3 ’ , [
5 match (idpat (’ v1 ’) ,
6 apply (func (’ anon@2 ’ , [
7 match (tup lepat ([i n tpa t (0) ,
8 idpat (’ y ’)]) , id (’ y ’)) ,
9 match (tup lepat ([idpat (’ x ’) ,

10 idpat (’ y ’)]) ,
11 apply (apply (id (’ g ’) ,
12 id (’ x ’)) , apply (id (’∗ ’) ,
13 tup l e ([id (’ x ’) , id (’ y ’)]))))
14]) , tup l e ([id (’ v0 ’) , id (’ v1 ’)])))
15]))])
16 , funmatch (’ g ’ , [
17 match (idpat (’ v4 ’) , func (’ anon@7 ’ , [
18 match (idpat (’ v5 ’) ,
19 apply (func (’ anon@6 ’ , [
20 match (tup lepat ([idpat (’ x ’) ,
21 idpat (’ y ’)]) , apply (apply (id (’ f ’) ,
22 apply (id (’− ’) , tup l e ([id (’ x ’) ,
23 i n t (’ 1 ’)]))) , id (’ y ’)))
24]) , tup l e ([id (’ v4 ’) , id (’ v5 ’)])))
25]))])
26])
27 ,
28 [
29 apply (id (’ p r in t ln ’) ,
30 apply (apply (id (’ f ’) , i n t (’ 1 0 ’)) , i n t (’ 1 ’)))
31])

Figure 8: SML Program AST

1 let val x = Int . f romStr ing (
2 input (”Please ente r an i n t e g e r : ”))
3 val y = Int . f romStr ing (
4 input (”Please ente r an i n t e g e r : ”))
5 in
6 pr in t ”The maximum i s ” ;
7 p r i n t l n (i f x > y then x else y)
8 end

Figure 9: SML Compiler test4.sml

language. Teaching type inference is covered in the next
section.

2.3 Standard ML Type Inference
Type inference is the perfect kind of program to implement
in Prolog and the framework presented in this paper in-
cludes a partially implemented type inference system. Like
the code generation part of the compiler, the type inference
system needs to be extended to correctly type check some
of the test programs.

Implementing type inference is much easier when type infer-
ence rules are supplied. The framework provides a complete
set of type inference rules for the supported subset of Stan-
dard ML. Consider the program in figure ?? which contains
two functions that are mutually recursive. In a language
other than Prolog handling mutual recursion would be dif-
ficult since it requires unification to properly infer the type
of the mutually recursive functions. The type inference rule
for mutually recursive functions appears in figure ??.

∀i 1 ≤ i ≤ n,∀j 1 < j ≤ n, n ≥ 1,

[id1 7→ α1 → β1

{, idj 7→ αj → βj}]⊕ ε ` idi matchesi : αi → βi
ε ` fun id1 matches1 {and idj matchesj} ⇒
[id1 7→ close(α1 → β1) {, idj 7→ close(αj → βj)}]

Figure 10: The FunDecs Type Inference Rule

The type inference rule reads as follows: A set of functions
separated by and keywords are correctly typed if each func-
tion has a function type that is consistent across all the
matches. A match is a pattern and expression used in a
function definition. For a function type to be consistent in a
mutually recursive definition requires both its definition and
application be consistently typed. The use of close freezes
the definition of these function types so the types may be
used in subsequent applications of these functions. Closing
types is necessary when types may be polymorphic which
Standard ML supports.

1 gatherFuns ([] , []) .
2 gatherFuns ([funmatch (FName,) | Tai l] ,
3 [(FName, fn (,)) |FEnv]) :−
4 gatherFuns (Tai l , FEnv) .
5 typecheckDec (Env , funmatches (L) ,NewEnv):−
6 gatherFuns (L , NewEnv) ,
7 append (NewEnv , Env , FunEnv) ,
8 typecheckFuns (FunEnv , L) ,
9 closeFunTypes (NewEnv) .

Figure 11: FunDecs in Prolog

The type inference rule in figure ?? is implemented by the
Prolog predicates appearing in figure ??. The gatherFuns
predicate creates function types for each mutually recur-
sive function. These types, through unification, instantiate
to the (possibly polymorphic) types of the functions. The
closeFunTypes predicate closes the function types for poly-
morphic types. The program in figure ??, using this type in-
ference rule among others, passes the typechecker and prints
the following output.

val g = fn : int -> int -> int

val f = fn : int -> int -> int

val it : unit

The program passed the typechecker.

Students build on this type inference system in the same
manner as the compiler. Test programs that currently are
not supported are introduced and students work to enhance
the type inference system to support these test programs.

3. CONCLUSIONS
This paper has presented a very abbreviated look at a frame-
work for teaching programming languages. The framework
builds from the bottom-up covering assembly language on
a stack-based virtual machine, virtual machine implementa-
tion in C++, compiler implementation for a subset of Stan-
dard ML written in Standard ML, and type inference written
in Prolog. Students are guided in their investigation of pro-
gramming languages by extending the framework to compile
and infer the types of test programs.

The CoCo VM, Standard ML compiler, and type inference
system are all freely available at http://github.com/kentdlee.
Two versions exist. A publicly available version is available
to students to download. A private, but still free, version
containing the full source code for CoCo, the Standard ML
Compiler, and for inferring types is available for instructors
upon request. A textbook is also available[?] that covers
the material presented in this paper in much more detail.

The framework has been used in practice for two years with
excellent results. A fourteen week semester is divided up as
follows. About one week is devoted to learning about con-
text free grammars, derivations, and abstract syntax trees.
One week is spent learning the CoCo VM and writing a few
CoCo programs. C++ and the implementation of the CoCo
VM is studied for approximately two weeks. Two weeks
is spent learning functional programming and in particular
Standard ML. This is separate from the compiler project.
Two weeks is spent compiling the subset of Standard ML
presented in this framework. Two weeks is spent learning
how to program in the Prolog programming language. Fi-
nally, two weeks is spent studying and implementing type
inference. This leaves a couple of weeks to include adminis-
tering exams and some flexibility in the topics being covered.

The framework’s coverage of the ACM Computer Science
Curricula 2013 guidelines is thorough, covering all but one
area of the tier 1 and 2 guidelines and several elective guide-
lines as well. Functional and OOP programming paradigms
are covered. These two programming paradigms, type sys-
tems, program representation, language translation and ex-
ecution are all tier 1 and 2 (i.e. mandatory) topics of the
guidelines. Elective guidelines covered by this framework
include syntax analysis, compiler semantics, code genera-
tion, runtime systems, static analysis, advanced program-
ming constructs, and logic programming. Of the tier 1 and
2 requirements, absent is only event-driven and reactive pro-
gramming which is often covered in other courses.

Students feel a sense of real accomplishment in getting their
test cases to compile, typecheck, and run correctly. With
a clearly defined purpose, programming languages can be
an exciting and interesting course. Class evaluations were

anonymous and students were allowed to comment on the
strengths of the course. Here are a couple anonymous com-
ments about the course and using this framework.

This course is designed to make you learn about
programming languages and their implementation.
I think the goal was achieved very well.

Programming Languages has been a fantastic course.
I feel as though I have gained quite an under-
standing of how many languages work and be-
have. It has been really fun and interesting fig-
uring this out in a classroom setting. Definitely
the most fun computer science class I have taken
so far.

While the language implementation is non-trivial there is
much that can still be done with it including garbage collec-
tion in the VM, extending the VM for threaded computa-
tion, support for object-oriented languages within the VM,
implementation of a richer subset of Standard ML, or com-
piler development for a completely different language. These
projects can serve well as undergraduate research topics. In
practice, after students have gotten familiar with the frame-
work and what can be achieved using it, several have ex-
pressed interest in further extending the framework through
independent study.

